

Fig. 3.-Plot of the observed first order rate constants (k_{0}) for the appearance of $I_{2} v s$, the square of the concentration of total imidazole. The points are experimental and the curve is that obtained from equation 3 .

$$
\begin{equation*}
\mathrm{A}+\mathrm{B} \underset{k_{-1}}{\stackrel{k_{1}}{\longleftrightarrow}} \mathrm{C} \xrightarrow[k_{-2}]{\stackrel{k_{2}}{\longleftrightarrow}} \mathrm{D} \tag{2}
\end{equation*}
$$

where \mathcal{C} is at low steady state. With increasing imidazole concentration $k_{0} 0$ proceeded from second order to zero order dependence in imidazole concentration (Fig. 3). Thus, Michaelis-Menten type kinetics are followed (3)

$$
\begin{equation*}
k_{0}=\frac{0.95 \times 10^{-2}\left(\mathrm{IMT}^{2}\right)^{2}}{0.20+\left(\mathrm{I} \mathrm{M}_{\mathrm{T}}\right)^{2}} \tag{3}
\end{equation*}
$$

where k_{0} is the observed rate of attainment of equilibrium and $I M_{T}$ the total concentration of innidazole (i.e., $\mathrm{IM}_{\mathrm{T}}=\mathrm{IM}+\mathrm{IM}+\mathrm{H}$). The results enumerated above suggest two alternative explanations for the imidazole catalysis: (a) saturation of I_{1} by two molecules of an imidazole species followed by an intracomplex general base and/or general acid catalysis of the prototropic shift leading to $I_{2} ;$ and/or (b) the catalysis of the formation of I_{1} involving two molecules of an imidazole species is rate determining at low IM_{T} concentration but at high IM_{T} concentration the non-catalyzed prototropic shift of I_{1} to I_{2} becomes rate determining and the reaction changes from second to zero order in $1 \mathrm{M}_{\mathrm{T}}$. Replacement of pyridoxal by its anorpholine imine does not unduly affect the over-all rate. suggesting that the ratedetermining step is in fact the prototropic shift. Furthermore, the kinetic treatment is based upon the assumption of a rate-determining prototropic shift and has been found to predict accurately the effect of variation of the initial reactant concentrations upon the observed overall rates.

Following the attainment of equilibrium in I_{2} the second and slower phase of the reaction is encountered in which equilibrium is attained between all species [i.e., amino acid + pyCHO $\rightarrow \mathrm{I}_{1} \rightleftarrows$ $I_{2} \rightleftarrows \mathrm{pyNH},+$ keto acid \mid. The second phase is accompanied by an increase in absorbance at the isosbestic points for the first phase, appearance of new isosbestic points at 310,350 and $260 \mathrm{~m} \mu$, decreased absorbance at $395 \mathrm{~m} \mu$ (continuing decrease in pyCHO concentration) and decreased absorbance at $246 \mathrm{~m} \mu$ (the absorbance by $\mathrm{I}_{2}+\mathrm{pyCHO}+$ amino acid at $246 \mathrm{~m} \mu$ is greater than that of $\mathrm{py}_{2} \mathrm{NH}_{2}+$ keto acid produced). The pH -dependence of the imidazole-catalyzed reaction, details
of the kinetics and equilibrium constants and a discussion of the possible mechanism for catalysis will be submitted for publication shortly.

The present results open the door to the possible establishment in aqueous solution of similar model systems of the racemization, decarboxylation and $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ bond scissions of α-amino acids which are mediated by enzymes requiring pyridoxal phosphate as cofactor. Investigation of these possibilities is being actively pursued.
(8) This work was supported by grants from the National Institutes of Health and the National Science Foundation.
(9) Post-doctoral Fellow, Department of Chemistry, Cornell University.
Department of Chemistry
Cornell University Thomas C. Bruice ${ }^{8}$
Ithaca, N. Y.
Received April 21, 1962

THE MOLECULAR STRUCTURE OF $\mathrm{Co}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$

Sir:
The reactions of acetylenes with metal carbonyls or other transition metal compounds have yielded a wide variety of organometallic complexes. Compounds of two general types have been prepared in which the acetylenes either (1) form new carboncarbon bonds by polymerization or reaction with other ligands present or (2) complex to a metal without formation of new carbon-carbon bonds. The former group ${ }^{1-5}$ includes compounds with metals bonded to organic ring systems (with or without incorporated CO groups); the ring system may be heterocyclic with a transition metal as the hetero atom. ${ }^{5}$ To date the only known structures of the latter group of compounds, ${ }^{6}$ in which acetylene remains as a distinct recognizable entity, have involved acetylenes which form metal complexes either via one ${ }^{7}$ or two ${ }^{8,9} \mu$-type bonds ${ }^{10}$ or via two "bent" σ-bonds. ${ }^{1,2 a, 11}$
(1) G. E. Coates, "Organometallic Compounds," 2nd Ed., John Wiley and Sons, Inc., New York, N. Y., 1960.
(2) (a) G. E. Coates and F. Glocking, "Organometallic Chemistry," edited by H. Zeiss, Reinhold Publishing Corp., New York. N. Y., 1960, pp $458-463$: (b) J. Chatt, P. I. Pauson and I.. M. Venanzi, ihid. pp. 492-498: (c) H. Zeiss, itid. . pp. 411-417.
(3) I). W. A. Sharp, "Annual Reports on the Progress of Chemistry." The Chemical Society (London). 56, pp. 140-143 (1959); 67, pp 147-148 (1960)
(4) P. L. Pauson, Proc. Chem. Soc., 297 (1960).
(5) (a) W. Hübel, E. H. Braye, A. Clauss, E. Weiss, U. Krüerke, D. A. Brown, G. D. S. King and C. Hoogzand, J. Inorg. Nucl. Chem., 9, 304 (1959); (b) W. Hubel and E. H. Braye, ibid., 10, 250 (1959); (c) E. H. Braye, C. Hoogzand, W. Hübel, U. Krüerke, R. Merényie and E. Weiss, "Advances in the Chemistry of the Coordination Compounds," edited by S. Kirschner. The Macmillan Co., New York, N. Y.. 1961. pp. 190-198; (d) G. N. Schrauzer, J. Aon. Chem. Soc., 81, 5307 (1959).
(6) Transition metal acetylides or metal acetylene complexes with the acetylene possessing additional conrdinating groups capable of interacting with a metal atom (íg., hydroxyacetylenes) are not included in this classification.
(7) F. L. Carter and E. W. Hughes, Acta Cryst., 10, 801 (1957); S. V. Bukhovets and N. K. Pukhova, Zhur. Neorg. Khim., 3, 1714 (1958) ; J. Chatt. I. A. Duncanson and R. G. Guy, Chem. and Ind., 430 (1959); J. Chatt. R. G. Guy and I. A. Duncanson. J. Chem. Soc. 827 (1961).
(8) H. Greenfield, H. W. Sternberg, R. A. Friedel, J. H. Wotiz; R. Markby and I. Wender, J. Am. Chem. Soc., 78, 120 (1956); W. G. Sly, ibid., 81, 18 (1959).
(9) J. F. Tilney-Bassett and O. S. Mills, J. Am. Chem. Soc., 81, 1757 (1959); M. Dubeck, ibid., 82, 302 (1960): J. F. TilneyBassett, J. Chem. Soc., 577 (1961).

We wish to report the results of an X-ray study of $\mathrm{CO}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ which has revealed the first known case of a molecular metal-acetylene complex in which the acetylene donates 4 -electrons via two σ-bonds and a "bent" μ-type bond. ${ }^{10}$ This compound prepared by Krüerke and Hübel ${ }^{12}$ was generously made available by Dr. Hübel.

The black crystals of symmetry $\mathrm{C} 2 / \mathrm{c}$ contain eight molecules in a unit cell of dimensions $a=$ $15.44 \AA ., b=9.65 \AA ., c=27.42 \AA$., and $\beta=92^{\circ}$. 05^{\prime}. A three-dimensional structural analysis including isotropic least squares refinement ${ }^{13}$ and error analysis ${ }^{14}$ has yielded the molecular configuration (Fig. 1). The reliability index, R_{1}, is 7.2% for 1660 observed reflections.

The structure consists of discrete $\mathrm{CO}_{4}(\mathrm{CO})_{10^{-}}$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ molecules in which the acetylene fragment functions as an olefinic coördinating group by forming σ-bonds with two cobalts, Co_{2} and Co_{3}, and a "bent" four-centered ${ }^{15} \mu$-type bond with the other two cobalts, Co_{1} and Co_{4}. The cobalts are also interconnected by metal-metal bonds and two unsymmetrical bridging carbonyl groups. The configuration of the cobalt atoms can be achieved by a symmetrical distortion of a tetrahedron of cobalt atoms (as found in Co_{4} $(\mathrm{CO})_{12}{ }^{17}$) to give a "butterfly" form with a dihedral angle of 118°. The approximate $\mathrm{C}_{2 y}$ point symmetry of the cobalt atoms relates Co_{1} with CO_{4} and CO_{2} with CO_{3} and results in three different Co^{-} Co distances. The non-bonding $\mathrm{Co}_{1} . \mathrm{CO}_{4}$ distance is $3.55 \AA$.; the bonding $\mathrm{CO}_{2}-\mathrm{Co}_{3}$ distance of $2.55 \AA$. is approximately $0.1 \AA$. longer than the average distance of $2.43 \AA \bar{\AA}$. for the other four equivalent $\mathrm{Co}-\mathrm{Co}$ bonds. The idealized configuration for the $\mathrm{CO}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{\mathrm{i}}\right)$ molecule retains only the cobalts' twofold axis; no special molecular symmetry is required by the space group, since all atoms are in general positions.

As expected from the compound's diamagnetism, the electronic configurations of both types of cobalts conform to the "inert gas rule." Each of the seven coördinated Co_{2} and Co_{3} atoms forms σ bonds with the three other cobalts, two terminal carbonyls, one bridging carbony1. and one carbon of the olefinic group. Each of the other two cobalts, Co_{1} and Co_{4}, is linked to six coördinating groups- Co and Co_{3}. two terminal carbonyls, one bridging carbonyl. and the olefinic moiety. Al-

[^0]

Fig. 1.-Molecular structure of $\mathrm{CO}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$: metal-metal bond distances are $\mathrm{Co}_{1}-\mathrm{Co}_{2}=2.450 \AA$. $\mathrm{CO}_{1}-\mathrm{CO}_{3}=2.433 \AA ., \mathrm{CO}_{2}-\mathrm{CO}_{4}=2.438 \AA ., \mathrm{CO}_{3}-\mathrm{CO}_{4}=2.416$ \AA., and $\mathrm{CO}_{2}-\mathrm{CO}_{3}=2.552 \AA$. , the non-bonding distance $\mathrm{Co}_{1} \ldots \mathrm{CO}_{4}=3.547 \AA$. (all with e.s.d. $\pm 0.005 \AA$.). The μ-type $\mathrm{Co}-\mathrm{C}$ (olefin) distances are $\mathrm{Co}_{1}-\mathrm{C}_{14}=2.03 \AA$., $\mathrm{CO}_{4}-\mathrm{C}_{13}=2.03 \AA$., $\mathrm{CO}_{1}-\mathrm{C}_{13}=2.18 \AA$. and $\mathrm{CO}_{4}-\mathrm{C}_{14}=2.15$ \AA.; the average cobalt distance to the midpoint of $\mathrm{C}_{18}-\mathrm{C}_{14}$ is $1.97 \AA$. The average $\mathrm{Co}-\mathrm{C}$ (olefin) σ-bond distance is $2.01 \AA$. (all $\mathrm{Co}-\mathrm{C}$ distances with e.s.d. $\pm 0.014 \AA$.). The olefinic $\mathrm{C}-\mathrm{C}$ distance is $1.44 \AA$. (e.s.d. $\pm 0.020 \AA$.). For the eight terminal carbonyls the $\mathrm{Co}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances are $1.73 \AA$. (av.) and $1.18 \AA$. (av.), respectively. For the two unsymmetrical bridging carbonyls the $\mathrm{Co}-\mathrm{C}$ distances are $1.84 \AA$. (av.) to Co_{1} and CO_{4} and $1.97 \AA$. av.) to CO_{2} and Co_{3}; the a verage C -O distance is $1.17 \AA$. (The e.s.d.'s for $\mathrm{Co}-\mathrm{CO}$ and $\mathrm{C}-\mathrm{O}$ distances are $\pm 0.019 \AA$. and $\pm 0.023 \AA$., respectively.)
though the olefinic carbons are not equidistant from either Co_{1} or CO_{4} (i.e., an average difference of $0.13 \AA$. is found), a two π-electron donation to both cobalts by a delocalized μ-type bond is required for a "closed" shell electronic ground state. A net charge transfer from the olefinic double bond to the two cobalts is indicated by the lengthening of the $\mathrm{C}_{13}-\mathrm{C}_{14}$ bond to $1.44 \AA$; sinnilarly increased bond lengths are observed for other simple metal-olefin complexes. ${ }^{18}$ This double bond interaction with two metals, found in $\mathrm{Co}_{4}(\mathrm{CO})_{11}-$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{3}\right)$. is the first known example of its kind; a formally analogous diene interaction with two metals involving four π-electrons is known for one isomer of $\mathrm{Fe}_{3}(\mathrm{CO})_{8}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} .{ }^{19}$ A qualitative MO description of these types of bonding has been formulated by Brown. ${ }^{20}$ The nature of bonding of the acetylene group in $\mathrm{Co}_{4}(\mathrm{CO})_{10}$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ resembles somewhat the bonding found in thoriunn dicarbide in which each C_{2} group interacts with six thorium atonns. ${ }^{21}$

[^1]Unlike $\mathrm{Co}_{2}(\mathrm{CO})_{6}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right),{ }^{8}$ which is prepared from $\mathrm{Co}_{2}(\mathrm{CO})_{8}$, the formation of $\mathrm{CO}_{4}\left(\mathrm{CO}_{10^{-}}\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{6}\right)$ from $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ does not involve a direct substitution of an acetylene for two bridging carbonyls, provided that Corradini's proposed structure ${ }^{17}$ for $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ is correct. A two-dimensional X-ray study of $\mathrm{CO}_{4}(\mathrm{CO})_{12}$ by Corradini ${ }^{17}$ revealed the cobalts at the vertices of a tetrahedron, but a crystal disorder prevented a completely unambiguous determination of the molecular geometry of the carbonyl groups. Our structural results show that Corradini's model would necessitate molecular reorganization of carbonyl groups during the formation of $\mathrm{CO}_{4}(\mathrm{CO})_{10}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{C}_{2} \mathrm{C}_{2} \mathrm{H}_{5}\right)$ from $\mathrm{Co}_{4}(\mathrm{CO})_{12}$, contrary to the predictions of Hübel and co-workers ${ }^{5_{5}}$ based on the experimental reaction conditions. Hübel and Krüerke ${ }^{12}$ have suggested possible alternative structures for Co_{4} $(\mathrm{CO})_{12}$, and in this connection structural work on the iridium and rhodium carbonyls is in progress in this laboratory.
We are pleased to acknowledge the use of the computing facilities of NAL at the University of Wisconsin and the financial support of this research by the National Science Foundation (Grant No. 86-3474).
(22) National Science Foundation Fellow.

Department of Chemistry
University of Wisconsin
Madison 6, Wisconsin
Lawrence F. Dahl

Received April 7, 1962

γ-PYRAN

Sir:
Although the chemistry of pyran has been the subject of research for over a century, the parent compounds, α - and γ-pyran, hitherto have re-

Fig. 1.-The n.m.r. spectrum of γ-pyran in carbon tetrachloride.
mained unknown. ${ }^{1}$ Numerous attempts at the synthesis of these compounds resulted either in ring opening or extensive decompositions. ${ }^{1}$ We became interested in these heterocyclic compounds during the course of our synthetic studies on oxepin. We now wish to submit final evidence for the existence of unsubstituted γ-pyran (I).

[^2]

A column ($2.5 \times 35 \mathrm{~cm}$.) was packed with glass beans (0.5 cm . in diameter) and heated to 350°. 2 -Acetoxy-3,4-dihydro-2H-pyran (II) ${ }^{2}$ (亏 g.) was added dropwise onto the column over a period of 2.5 minutes and the product was trapped in a Dry-Ice cooled flask containing hydroquinone in ether. Nitrogen was used as a carrier gas. Identification of acrolein, vinyl acetate and acetic acid in the reaction mixture indicates that the acetate pyrolysis is competing with the reverse DielsAlder reaction. ${ }^{3}$ Due to the extreme instability of I (vide infra) the isolation of I was achieved only by gas chromatography ${ }^{3}$ at 50° after treatment of an ethereal solution of the pyrolysis product with wet sodium bicarbonate at 0° for two hours. ${ }^{4}$ The yield is 15 or 30% based on starting material consumed. I boils at 84° with slight decomposition. ${ }^{5}$
The chemical proof for the structure of I was obtained by i) the conversion of I to tetrahydropyran ${ }^{3.6}$ by catalytic hydrogenation and ii) the preparation of glutaraldehyde bis-dinitrophenylhydrazone ${ }^{7}$ from I (m.p. and m.m.p., 186-188 ${ }^{\circ}$).

Spectral evidence for structure I is given below. The n.m.r. spectrum is very similar to that of $1,4-$ dihydropyridine ${ }^{8}$ and shows one kind of aliphatic and two kinds of olefinic hydrogens, each having an equal intensity. Spin-spin coupling constants are: $J_{34} \simeq 3.0$ c.p.s., $J_{24} \simeq 1.5$ c.p.s. ${ }^{9}$ This eliminates α-pyran as a possible structure. The infrared spectrum (chloroform) is simple: 3.28μ $(\mathrm{m}), 3.42(\mathrm{~m}), 3.52(\mathrm{~m}), 5.93(\mathrm{~s}), 6.12(\mathrm{~s}), 7.98(\mathrm{~s})$, $8.90(\mathrm{~m}), 9.36(\mathrm{~s}), 9.90(\mathrm{~m}), 10.23(\mathrm{~m}), 10.40(\mathrm{~m})$, 11.02 (s) and $11.38(\mathrm{~m})$. The two bands (5.93 , 6.13) in the double bond region are believed to correspond in nature to a doublet observed for an acid anhydride. ${ }^{10}$ Only a strong end absorption was observed in the ultraviolet spectrum (methanol).
(2) C. W. Smith, D. G. Norton and S. A. Bathard. J. Am. Chem. Snc., 73, 5270 (1951); R. H. Snyder, H. J. Shine, K. A. Leibbrand and P. O. Ta wney, ibid., 81, 4299 (19.59).
(3) Gas chromatography and infrared spectra were employed for identification of the liquid compounds described in this Communication. Gas chromatography was operated with a $9 \mathrm{~mm} . \times 15-\mathrm{cm}$, column containing 10% Apiezon L on Anakrom ABS ($80-90$ mesh). Column conditions were: temperature, 50°; helium fow rate, $45 \mathrm{ml} . /$ min. Relative retention times are: acetic acid (1.000), acrolein (0.225), vinyl acetate (0.544), γ-pyran (1.820) and tetrahydropyran (2.499).
(4) This treatment removed most of the acrolein and vinyl acetate as well as acetic acid.
(5) Determined by the Emich method, A. I. Vogel, "Practical Organic Chemistry," 3rd Ed., Longmans, Green and Co., Iondon, 1957, p. 86. A sample in a capillary was introduced in a preheated bath.
(6) D. W. Andrus and J. R. Johnson, "Organic Syntheses," Vol. 23, John Wiley and Sons, Inc., New York, N. Y., 1943, p. 90.
(7) M.p. 186-187 ${ }^{\circ}$ was reported by R. H. Hall and B. K. Howe, J. Chem. Soc., 2480 (1951), and $189-190^{\circ}$ and 192° in ref. 3.
(8) M. Saunders and E. H. Gold, J. Org. Chem., 27, 1439 (1962)
(9) The n.m.r. spectrum was taiken with a Varian Associates $60-\mathrm{Mc}$ high resolution spectrometer.
(10) The nature of this splitting has not been thoroughly understood: L. J. Bellamy, "The Infrared Spectra of Complex Molecules," 2nd Ed., John Wlley and Sons, Inc., New York, N. Y., 1958, pp. 127128. Dlvinyl ether and its homologs show similar doublets, A. Kirrmann and P. Chancel, Bull. Soc. Chim. France, 1338 (1954).

[^0]: (10) A μ-bond is defined ${ }^{4}$ as the interaction by direct overlap of o-orbital of a metal with an electron-donating π-orbital of an ansaturated hydricarbon. The metal orlital is perpendicular to the nodal plane of the -orbital.
 (11) J. Chatt, G. A. Rowe and A. A. Williams, Proc. Chem. Soc., 208 (19.5\%).
 (12) C. Krüerke and w. Hübel, presented at 17th International Congress of Pure and Applied Chemistry. Munich, Sept., 1959: U. Kriierke and W. Hulca, Chem. Bor, 94, 2899 (1961).
 (13) W. R. Busing and H. A. Levy. "A Crystallographic Least Rquares Refinement Program for the IBNI 704," ORALS (1959).
 14) W. R. Busing and H. A. Levy. "A Crystallographic Function and Error Program for the IBM 704, " ORXFE (1959)
 (15) This terminology refers to a localized MO extending over four atomic nuclei, each with one available AO. Alternatively, the interaction may be regarded as a 3 -centered localized MO involving one σ-orbital for each of the two cobalts and the one π-orbital for the olefinic moiety' which contributes two electrons. A compound having such honding is electron-deficient. ${ }^{16}$
 (16) Cf. R. E. Randle. J. Phys. Chcm. 61, 45 (1957)
 (17) 1). Corradiui, J. Chem. Phys., 31, 1676 (1939).

[^1]: (18) N. C. Baenziger. J. R. Doyle and G. I. Richards. "Advamers in the Chemistry of the Coordination Compounds," edited by \leqslant Kirschner, The Macmillan Co., New York, N. Y., 1961, pp. 131-138; L. F. Dahl and C. H. Wei, to be presented at 7th ICCC, Stockholm and Uppsala, Sweden, June, 1962.
 (19) R. P. Dodge and V. Schomaker, private communication, 1961.
 (20) D. A. Browa, J. Inorg. Nuch. Chem., 10, 39 (1959); 10, 49 (1959).
 (21) E. B. Hunt and R. IF. Rundte, J. . 4 m . Chom. Sw, 73, 1774 (1951).

[^2]: (1) For instance, see: A. Albert, "Heterocyclic Chemlstry," Essen. tial Books, Fair Lawn, N. J., 1959, p. 265; N. Campbell, "Chemistry of Carbon Compound," Vol. IVB, ed. by E. H. Rodd, Elsevier Publishing Co., Amsterdam, 1959, Chap. VIII; J. Fried, "Heterocyclic Compound," Vol. I, ed. by R. C. Elderfeld, John Wiley \& Sons, Inc., New York, N. Y., 1950, Chap. 7.

